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ABSTRACT
One of the daunting challenges of interactive genetic algo-
rithms (iGAs)—genetic algorithms in which fitness measure
of a solution is provided by a human rather than by a fitness
function, model, or computation—is user fatigue which leads
to sub-optimal solutions. This paper proposes a method to
combat user fatigue by augmenting user evaluations with a
synthetic fitness function. The proposed method combines
partial ordering concepts, notion of non-domination from
multiobjective optimization, and support vector machines
to synthesize a fitness model based on user evaluation. The
proposed method is used in an iGA on a simple test problem
and the results demonstrate that the method actively com-
bats user fatigue by requiring 3–7 times less user evaluation
when compared to a simple iGA.

Categories & Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning–Parameter Learn-
ing, H.5.2 [Information Interfaces and Presentation]: User
Interfaces–Theory and methods.

General Terms
Algorithms, Design, Human Factors, Theory.

Keywords
Interactive Evolutionary Computation. Human Evaluation,
Synthetic Fitness, Support Vector Machines.

1. INTRODUCTION
An important concept used in genetic and evolutionary

algorithms [16, 9] to implement the survival-of-the-fittest
mechanism and to distinguish between good and bad so-
lutions is the notion of fitness. Unlike traditional search
methods, the fitness measure can be relative, and can be
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an objective measure consisting of a mathematical equation,
model, or a computation. It could also be a subjective mea-
sure involving human evaluation, or even be coevolved in a
co-operative or competitive environment. Evolutionary al-
gorithms (EAs) that use human evaluations for determining
quality of candidate solutions are called interactive evolu-
tionary algorithms (iEAs) [26].

Unlike in evolutionary algorithms with objective fitness
measures, one of the daunting challenges of iEAs is effective
methods of combating user fatigue. Even for moderately-
sized problems, iEAs may require a few hundred to a few
thousand fitness evaluations, which is highly improbable—
oftentimes even impossible—for users to evaluate. This
places a premium on a variety of efficiency-enhancement
techniques [10], particularly evaluation relaxation [23]. In
evaluation relaxation schemes, the computationally costly,
but accurate function evaluation is replaced by a cheap,
but less accurate surrogate function. A serious stumbling
block in developing surrogate fitness functions in iEAs is the
absence of computable fitness function. Additionally, the
user evaluation is relative and user preference might change
over time. Hence, existing evaluation-relaxation methods
fall short and cannot effectively model user fitness function.

Therefore, the purpose of this paper is to propose an
evaluation-relaxation scheme for actively combating user fa-
tigue. Specifically, we address two critical issues: (1) the
lack of a computable fitness, and (2) lack of systematic way
for modeling user-decision process. The proposed method
consists of three major components: (1) partial ordering:
The qualitative decisions made by the user about relative
solution quality is used to generate partial ordering of so-
lutions, (2) induced complete order: The concepts of non-
domination and domination count from multi-objective evo-
lutionary algorithms [9] to induce a complete order of the
solutions in the population based on their partial ordering,
and (3) Surrogate function via support vector machine: The
induced order is used to assign ranks to the solutions and
use them in a support vector machine (SVM) to create a sur-
rogate fitness function that effectively models user fitness.

Inducing a synthetic fitness allows us to exploit different
time scales involved in an iEA. Computing a synthetic fitness
value may take several orders of magnitude less time than a
typical user evaluation. This significant disparity in evalua-
tion times allows us to evolve the population with surrogate
fitness alone and to show the user potentially high-quality
solutions. The proposed approach provides the following
key benefits: First and foremost, it allows us to use larger

1363



population sizes—which otherwise is at least improbable,
if not impossible—required to obtain high-quality solutions
[10]. It also speeds-up the iGA process and thereby avoids
user fatigue. Additionally, the method presents potentially
high-valued solutions for user evaluation, thus avoiding user
frustration. Finally, the model can be regarded as a useful
insight into the user preferences.

This paper is organized as follows. Section 2 reviews the
research on iGAs. The surrogate model of the synthetic
subjective fitness is presented in section 3. This section
presents how a hypothetical fitness can be synthesized com-
bining partial ordering concepts, multiobjective optimiza-
tion ideas, and support vector machines. The proposed
modeling is integrated and tested in real web application.
Section 4 briefly reviews such application and summarizes
the results obtained using it when compared to plain iGAs
without reconstructed subjective fitness optimization. Fi-
nally, discussions and conclusions are presented in section
5.

2. INTERACTIVE GENETIC
ALGORITHMS

Dawkin’s Blind Watchmaker program [7] and the
Faceprints system developed at New Mexico State Univer-
sity [4] are two early examples of iGAs. For example, in
Faceprints, the system replaces the role of a human sketch
artist in evolving the faces of criminal suspects from witness
recollection. Faces are encoded as binary strings where sub-
codes represent different facial features (nose type, mouth
type, hair type, etc.). Each full chromosome maps to a face
and the population of chromosome is presented to the hu-
man critic who is asked to determine how close the face re-
sembles that of the criminal. This subjective ten-point scale
is used to drive the evolution of subsequent generations of
faces, and in a relatively short time, the GA arrives at a
reasonable facsimile of the correct face.

The use of interactive genetic algorithms allow the fu-
sion of human and computer efforts for problem solving [26].
However, putting the evaluation process into the hands of a
user sets up a different scenario when compared to normal
optimization. Takagi [26] presented a review of research ef-
forts related to the iGAs challenges. These research areas
included: (1) discrete fitness value input method, (2) pre-
diction of fitness values, (3) interface for dynamic tasks, (4)
acceleration of iGAs convergence, (5) combination of evolu-
tionary and non-evolutionary computation, (6) active inter-
vention, and (7) theoretical research. These areas may be
reorganized in five main elements that iGAs need to address
on their road to effective solution:

Clear goal definition: A precise description of the goal is
key element to help the user engage a successful inno-
vation process. A clear definition helps evolve high-
quality solutions. Moreover, if such definition is main-
tained along the run, the user’s task gets greatly sim-
plified.

Impact of problem visualization: The solutions pre-
sented to the user need to be understandable and com-
parable. If the visualization is too complex, the user
will be overwhelmed with details. If there is no sim-
ple way to qualitatively compare solutions, the user
may not be able to make a proper decision. If such

qualitative comparison is not easy, the quality of the
user evaluations will decrease and greatly penalize the
performance of the iGA.

Lack of real fitness: iGAs lack a quantitative fitness
function analogous to the one used in traditional GAs.
The qualitative nature of the evaluation process usu-
ally leads to scenarios where the user is asked to pro-
vide solution rankings or relative evaluations among a
selected subset of solutions.

Fatigue: User fatigue is a critical element to produce high-
quality solutions. Long times until convergence lead to
tedious and demanding attention periods on the user
side. Fatigue becomes the main reason of an early stop
of the iGA process and, hence, leads to low-quality
solutions.

Persistence of user criteria: The user can change his
evaluation criteria along an iGA leading to a noisy
evaluation scenario. The user criteria may drift along
the run, leading to a dynamic optimization scenario.
Methodologies for helping the user to maintain the per-
sistence of his evaluation criteria along the iGA run is
a key element.

Our work focuses on the lack of a real fitness function
and how we can take advantage of the relative evaluations
provided by the user to reduce the user fatigue. Section 3
presents how such goal can be achieved by means of sub-
jective fitness reconstruction. Section 4 presents how such
reconstructed subjective fitness may be later combined with
a traditional GA to combat the user fatigue.

3. SYNTHESIZING A SUBJECTIVE
FITNESS

Simple GAs may require hundreds or thousands of func-
tion evaluations before finding good quality solutions, but
most human evaluators providing feedback to an interactive
GA will tire far short of best convergence. A number of tech-
niques can be adopted to overcome this difficulty, but they
largely fall in the area of GA efficiency enhancement [10].
Techniques such parallelization, time continuation, evalua-
tion relaxation, and hybridization are useful approaches to
combat evaluation fatigue by reducing the convergence time
[10, 24]. However, even efficiency enhancements assume the
existence of an objective fitness function that can be com-
puted without any human intervention. Such requirement
can not be fulfilled under the iGAs paradigm. Moreover, the
qualitative nature of the evaluations in an iGA also fosters
other issues that need to be addressed. For instance, if an
iGA run involves two different parallel evaluators then the
iGA needs to deal with two different subjective evaluation
criteria. Thus, no assumption should be made about the
coherence of such criteria across the parallel evaluators—
multimodal and multiobjective approaches may be needed
to deal with such situations.

3.1 The Lack of an Objective Fitness
Several techniques have been used to collect the user sub-

jective evaluations. Ranking of solutions, quality measure-
ment of the solution in a 0 to 100 scale, or selecting a subset
of the promising solutions from a pool are a few alternatives
proposed since iGAs origins [26]. Each of these methods
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have their advantages and disadvantages, combining differ-
ent evaluation and selection schemes.

Tournament selection [12] is one of the most widely used
ordinal selection schemes. In tournament selection a spec-
ified number of individuals, s, is selected from the current
population of size n. The best individual out of the s in-
dividuals gets a copy in the mating pool. The selection of
the s individuals can be performed either with replacement
or without replacement. In selection with replacement the
individuals selected from the current tournament are candi-
dates for other tournaments. On the other hand, if selected
without replacement, the individual–once selected–are not
candidates for other tournaments.

Such a selection scheme replaces the need for collecting
a numeric evaluation from the user. Instead, an iGA un-
der a tournament scheme with replacement displays a set of
individuals, and the user pick the best solution out of the
s candidates shown. The simplest situation for the user is
when s = 2. For instance, given two solutions s1 and s2 in a
given tournament, the user picks one–s2 for instance. This
decision can be safely casted into fitness fitness terms; s2 is
better than the one of s1, hence, f(s2) > f(s1). Such inter-
pretation introduces a partial ordering among solutions.

3.2 Properties of a Synthetic Fitness
Any attempt to synthesize the subjective fitness based on

the partial order provided by the user requires, at least,
two properties to be satisfied: (1) fitness extrapolation,
and (2) order maintenance. The first property—fitness
extrapolation—requires that the synthetic fitness provide
meaningful inferences beyond the boundaries of the current
partial order provided by the user. This property guarantees
that any attempt to optimize such surrogate fitness will pro-
vide a useful guess of the user future evaluations. The second
property—order maintenance—guarantees a synthetic fit-
ness consistent under a tournament selection scheme. Thus,
order maintenance guarantees that a synthetic fitness is ac-
curate if it maintains the partial ordering given by the user
decisions. Such assumptions allow us to use low-cost high-
error models, as long as they maintain the proper ordering.

3.3 Surrogate Models and Subjective Fitness
Nearest-neighbor models have been commonly used as

synthetic fitnesses[26]. However such models may not sat-
isfy the properties mentioned above. Such models assume
that given a set of user-evaluated solutions, the fitness of a
new solution may be estimated as the fitness of the closest
evaluated solution—using some distance metric. Other ap-
proaches average the fitness of the k nearest solutions. It is
easy to prove that such schemes may easily violate both of
the previous properties.

No fitness extrapolation may be provided by such nearest-
neighbor surrogate model heuristic. Figure 1(a) illustrates
such situation with a simple OneMax counterexample. Any
finite randomly generated population will be bounded by
two solutions—the ones with the best and worst evaluated
fitness. The nearest-neighbor heuristic explained above pro-
duces a truncation of the synthetic fitness. If we optimize
such a synthetic fitness, the final population may converge
(in the best case) around the best solution in the near-
est neighbor model. This happens because all the poten-
tial new good solutions (top-right portion of the line in
figure 1(a)) are equally evaluated, not providing any use-
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olation and order
maintenance can not
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gate model heuristic.
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Figure 1: Any surrogate model of the subjective
fitness need to guarantee two properties: fitness ex-
trapolation and order maintenance.

ful insight on unseen good candidate solutions. Moreover,
weighted nearest-neighbor heuristics may also violate the
partial ordering property. A simple counter example may
be given using OneMax again. Let’s assume we are using a
3-nearest-neighbor equally-weighted heuristic, and the three
user-evaluated closest solutions to a new unseen solution
x = 41 are: s0 = (40, 40), s1 = (42, 42), and s2 = (45, 45).

The estimated fitness f̂(x) is f̂(x) = 1
3
(40+42+45) = 42.33.

Using such result we may infer that f(42) < f̂(41), violating
the inherent ordering of the problem.

Another surrogate model commonly used as a synthetic
fitness function is based on regressors (for instance, neural
networks [26]). In our work we use a generalized regression
model, the ε-insensitive regression (ε-SVM). A detailed de-
scription of ε-SVM may be found in literature somewhere
else [6, 25]. A synthetic fitness based on ε-SVM using a
linear kernel easily satisfies the fitness extrapolation and
order maintenance properties. Figure 1(b) illustrates how
such fitness extrapolates beyond the boundaries provided
by the user-evaluated solutions thanks to the hyper-plane
adjustment done by ε-SVM [6, 25]. Moreover, even with a
high-regression error, a ε-SVM guarantees the proper order-
ing of solutions under a tournament selection scheme. For
instance, given the example of figure 1(b), any hyper-plane
(y = m · x + c) with a positive slope m > 0 guarantees the
proper ordering of the synthetic fitness. Using the previous
example, s0 = (40, 40) and s1 = (42, 42),

s0 < s1 −→ f̂(s0) < f̂(s1) iff (m·xs0 +c) < (m·xs1 +c) (1)

holding when m > 0. Hence, high-error surrogate models
are synthetic fitness candidates, as long as the training ex-
amples are properly ordered.

The minimal number of user evaluations needed to ob-
tain a surrogate ε-SVM subjective fitness model that guar-
antees both properties is show in figure 2. Given a prob-
lem with no dependencies among decision variables, One-
Max, we sampled at random a set of evaluated solutions to
synthesize a fitness by training a ε-SVM regressor. Figure
2(a) displays the probability of perfect global ordering by
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Figure 2: A surrogate subjective fitness based on
ε-SVM requires a number of training examples that
grow linearly on the problem size � when no linkage
among decision variables are present.

the ε-SVM fitness as a function of the number of sampled
instances. Results are averaged among 1,000 independent
runs. Given a problem size �, there is a minimal number of
samples required to infer a property-complainant synthetic
fitness. Moreover, such minimal number of solutions grow
as � + 2, as figure 2(b) shows. Such results are totally con-
sistent with the theoretical PAC bounds of ε-SVM which
requires at least the number of training examples to grow
linearly with the number of dimensions of the problem [6,
25].

These results hold for problems where no linkage [27, 13]
among the decision variables is present. If linkage among
variables is present, then a polynomial kernel may be re-
quired by the ε-SVM to satisfy the fitness extrapolation and
order maintenance properties. The analysis of such model
under linkage conditions is left as further work to be ad-
dressed.

3.4 A Simple Synthesis Exercise
The surrogate models reviewed in the previous section

make a basic assumption: the partial order of user eval-
uations can be translated into a global numeric value. If
such a value is available, then ε-SVM provides an efficient
synthetic fitness. Thus, we need a method to turn the user-
provided partial ordering among the different solutions into
a numeric fitness value to synthesize the training examples
of ε-SVM. In a tournament selection of size s = 2, a user is
asked to provide an answer to the question of which of the
two choices is better. The outcome of such question may
be: the first shown, the second shown, or both are equal
or the user was unable to decide. Let’s assume the illustra-
tive example where eight solutions need to be evaluated as
presented in figure 3.

The tournament ordering presented in figure 3 guarantees
that the partial order introduced by the user evaluations
produces a connected graph G. Such graph G =< V, E >
represents the partial evaluation order representing the so-
lutions as vertex in V , and the pair-wise comparison among

010111 010100 010101 100001 100000 101010 001000 001110

4 2 3 2 1 3 1 3

Figure 3: Eight randomly chosen individuals from
a population, are grouped in seven different tour-
naments {(010111, 010100), (010101, 100001), (100000,
101010), (001000, 001110), (010111, 010101), (100000,
001000), (010111, 100000)}. The number beside each
node simulates the objective function in the user
mind.
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(a) Partial ordering
graph provided by the
comparisons provided
by the user based on
the tournaments of
figure 3
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(b) Equivalent partial
order graph where
equality relations have
been replaced by the
proper greater than
relations.

Figure 4: Partial ordering graph provided by the
comparisons provided by a user. Direction on the
arrows indicates greater than relations. When no
direction is provided, equality is assumed.

individuals (greater, lesser, or equal) as edges in E. The par-
tial ordering graph provided by the user may be undirected
(equal evaluations are allowed), however, such graph can be
easily turned into a directed graph as figure 4 shows. The di-
rected graph is obtained by replacing the equal (undirected
edges) by the proper greater or lesser relations (directed
edges), as figure 4 shows.

To create a synthetic fitness we propose a heuristic based
on the partial ordering provided by user evaluations and the
Pareto dominance concept [21] of multiobjective optimiza-
tion [5, 8]. A global ordering measure may be computed
using a heuristic based on two dominance measures, δ and
φ. Let’s define δ(v) as the number of different nodes present
on the paths departing from vertex v. Analogously, φ(v)
is defined as the number of different nodes present on the
paths arriving to v. Since the partial order is a directed
graph, such mapping has an interesting property. If v ap-
pears more than once in a path (trial) of δ(v) or φ(v), then
a cycle in such graph exists. Thus, due the greater and
lesser relations, a contradiction on the user evaluations is
identified. We will not discuss this issue further, leaving it
as part of the further research. The work presented breaks
such cycles by removing the oldest evaluation (edge) in the
path thus breaking the cycle. Table 1 computes δ(v) and
φ(v) given the graph presented in figure 4(b).
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Table 1: Estimation of the global ranking based on
the dominance measure. This data presented on the
table uses the partial order presented on figure 4(b).
Given a vertex v, the number of dominated vertexes
δ(v) and dominating vertexes is computed. Using
this measures, the estimated fitness may be com-
puted as f̂(v) = δ(v) − φ(v). The estimated ranking

r̂(v) is obtained by sorting based on f̂(v).

v f(v) r(v) δ(v) φ(v) f̂(v) r̂(v)

010111 4 1 5 0 5 1
010100 2 3 0 1 -1 4
010101 3 2 1 1 0 3
100001 2 3 0 2 -2 5
100000 1 4 0 3 -3 6
101010 3 2 2 0 2 2
001000 1 4 0 3 -3 6
001110 3 2 2 0 2 2

The estimated fitness of a given solution (vertex) v may

be computed as f̂(v) = δ(v)−φ(v). Intuitively, the more so-
lutions a solution v dominates (is greater than), the greater
the fitness. Otherwise, the more solutions dominate (are
greater than) a solution v, the smaller the fitness. The final

global estimated ordering r̂(v) is obtained sorting by f̂(v), as
shown in table 1. The estimated ranking introduces some
spurious relations inside common ranks. Once the global
ordering is computed (estimated ranking r̂(v)), such order-
ing may be used to train a ε-SVM. By optimizing such a
synthetic fitness we may obtain a look-a-head on candidate
solutions to be evaluated by the user.

4. USER FATIGUE AND SYNTHETIC
FITNESS FUNCTIONS

The next step toward fighting the user’s fatigue requires
to combine the synthetic fitness function with an iGA. This
section presents how we integrated both elements. The pro-
posed method was tested by an independent user with no
experience neither in the problem to be solved nor the usage
of iGAs. The results are analyzed and compared to the the-
oretical simple GA models of population sizing, convergence
time, number of function evaluations, and speed up.

4.1 Active Interactive Genetic Algorithms
The existence of a synthetic fitness allow us to actively use

such model to combat user fatigue. The proposed iGA (we
call it active iGA) may be summarized as shown in table 2.
Given the theoretical framework used so far (OneMax and
ε-SVM using a linear kernel), the compact GA is a suitable
option to optimize the synthetic fitness. The compact ge-
netic algorithm (cGA) [15], is one of the simplest estimation
of distribution algorithms [22, 17]. Similar to other EDAs,
cGA replaces traditional variation operators of genetic al-
gorithms by building a probabilistic model of promising so-
lutions and sampling the model to generate new candidate
solutions. The probabilistic model used to represent the
population is a vector of probabilities, and therefore implic-
itly assumes each gene (or variable) to be independent of
the other. Specifically, each element in the vector represents
the proportion of ones (and consequently zeros) in each gene

Table 2: Algorithmic description of the active iGA.

1. Create an empty directed graph G.
2. Create 2h random initial solutions (S set).
3. Create the hierarchical tournament set T using

the available solutions in S .
4. Present the tournaments in T to the user

and update the partial ordering in G.
5. Estimate r̂(v) for each v ∈ S .
6. Train the surrogate ε-SVM surrogate

synthetic fitness based on S and r̂(v).
7. Optimize the ε-SVM synthetic fitness

using the cGA.
8. Create a S ′ set with 2h−1 new different solutions,

where S
T

S ′ = ∅, sampling out of the probabilistic
model evolved by cGA.

9. Create hierarchical tournament set T ′ with 2h − 1
tournaments using 2h−1 solutions in S and 2h−1

solutions in S ′.
10. S ← S ∪ S ′

11. T ← T ∪ T ′

12. Go to 4 while not converged.

position. The probability vectors are used to guide further
search by generating new candidate solutions variable by
variable according to the frequency values.

The compact genetic algorithm consists of the following
steps:

1. Initialization: As in simple GAs, where the population
is usually initialized with random individuals, in cGA
we start with a probability vector where the probabil-
ities are initially set to 0.5. However, other initializa-
tion procedures can also be used in a straightforward
manner.

2. Model sampling: We generate two candidate solutions
by sampling the probability vector. The model sam-
pling procedure is equivalent to uniform crossover in
simple GAs.

3. Evaluation: The fitness or the quality-measure of the
individuals are computed.

4. Selection: Like traditional genetic algorithms, cGA is
a selectionist scheme, because only the better individ-
ual is permitted to influence the subsequent genera-
tion of candidate solutions. The key idea is that a
“survival-of-the-fittest” mechanism is used to bias the
generation of new individuals. We usually use tourna-
ment selection [12] in cGA.

5. Probabilistic model updating: After selection, the pro-
portion of winning alleles is increased by 1/n. Note
that only the probabilities of those genes that are dif-
ferent between the two competitors are updated. That
is,

pt+1
i =

8

<

:

pt
i + 1/n If xw,i �= xc,i and xw,i = 1,

pt
i − 1/n If xw,i �= xc,i and xw,i = 0,

pt
i Otherwise.

(2)
Where, xw,i is the ith gene of the winning chromosome,
xc,i is the ith gene of the competing chromosome,
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Figure 5: A simple interface for the active IGA test.

and pt
i is the ith element of the probability vector—

representing the proportion of ith gene being one—at
generation t. This updating procedure of cGA is equiv-
alent to the behavior of a GA with a population size
of n and steady-state binary tournament selection.

6. Repeat steps 2–5 until one or more termination criteria
are met.

More details are available elsewhere [15, 14]. However it is
important to note that the cGA is operationally equivalent
to the order-one behavior of simple genetic algorithm with
steady state selection and uniform crossover [15]. Therefore,
the theory of simple genetic algorithms can be directly used
in order to estimate the parameters and behavior of the
cGA.

4.2 Some Experimental Results and Analysis
We create a simple web interface to test the performance

of the active iGA proposed in table 2. The interface was de-
signed to minimize the interface bias providing a clear goal
definition, a simple problem visualization, and a clear rela-
tive comparison method to help maintain the user criteria.
Figure 5 shows a snapshot of a real iGA session conducted
using the proposed active iGA.

In order to collect unbiased results, a user with no expe-
rience on evolutionary methods or interactive optimization
was selected to perform the experimentation. The underly-
ing problem to be solved was OneMax given different prob-
lem sizes � = {4, 8, 12, 16, 20, 24, 28, 32}. The user did not
know the underlying problem to be solved. For each prob-
lem size, 10 independent runs were conducted by the user.
Such results were collected, averaged, and later analyzed and
compared against the the usage of a theoretical iGA based
on the simple GA.

We begin our analysis with the scalability of selectore-
combinative genetic algorithms followed by the scalability
of the active iGA. Two key factors for predicting the scal-
ability and estimating the computational costs of a genetic
algorithm are the convergence time and population sizing.
Therefore, in the following subsections we present facet-wise
models of convergence time and population sizing.

4.2.1 Population-Sizing Model
Goldberg, Deb, & Clark [11] proposed population-sizing

models for correctly deciding between competing BBs. They

incorporated noise arising from other partitions into their
model. However, they assumed that if wrong BBs were
chosen in the first generation, the GAs would be unable
to recover from the error. Harik, Cantú-Paz, Goldberg, and
Miller [14] refined the above model by incorporating cumu-
lative effects of decision making over time rather than in
first generation only. Harik et al. [14] modeled the decision
making between competing BBs as a gambler’s ruin prob-
lem. Here we use an approximate form of the gambler’s ruin
population-sizing model [14]:

n =

√
π

2

σBB

d
2k√m log m

v

u

u

t

 

1 +
σ2

N

σ2
f

!

, (3)

where k is the BB size, m is the number of BBs, d is the
size signal between the competing BBs, σBB is the fitness
variance of a building block, and σ2

N is the variance of the
noise, and σ2

f is the fitness variance. The above equation
assumes a failure probability, α = 1/m.

4.2.2 Convergence-Time Model
Mühlenbein and Schlierkamp-Voosen [20] derived a

convergence-time model for the breeder GA using the notion
of selection intensity [3] from population genetics. Thierens
and Goldberg [28] derived convergence-time models for dif-
ferent selections schemes including binary tournament se-
lection. Bäck [1] derived estimates of selection intensity
for s-wise tournament and (μ, λ) selection. Miller and
Goldberg [19] developed convergence-time models for s-wise
tournament selection and incorporated the effects of exter-
nal noise. Bäck [2] developed convergence-time models for
(μ, λ) selection. Even though the selection-intensity-based
convergence-time models were developed for the OneMax
problem, Miller and Goldberg [18] observed that they are
generally applicable to additively decomposable problems
of bounded order.

Here, we use an approximate form of Miller and Gold-
berg’s [19, 10] convergence-time model:

tc =
π

2I

√
m

s

1 +
σ2

N

σ2
f

. (4)

where I is the selection intensity, and � = mk is the string
length. For binary tournament selection, I = 1/

√
π. A

detailed derivation of the above equation and other approx-
imations are given elsewhere [10, 23].

Using equations 3 and 4, we can now predict the scal-
ability, or the number of function evaluations required for
successful convergence, of GAs as follows:

nfe,GA =
π2

4

σBB

d

√
k log m ·

 

1 +
σ2

N

σ2
f

!

· 2k ·m. (5)

4.2.3 Active iGA analysis
The first difference of that using a synthetic fitness

function is the population size requirements. Figure 6(a)
presents the population sizing of a simple GA and the one
of the iGA. As it can be seen, the iGA requires a population
size that, at least, grows linearly. Such requirement is the
result of using a ε-SVM with a polynomial kernel which re-
quire at least as many training examples as dimensions (� in
the iGA case) as figure 2(b) showed. Moreover, the active
iGA population is also constrained by the three tournament
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structure, given a problem size � the population size is forced
to grow 2�log2(�)�.

Figure 6(b) compares the convergence time of a active iGA
to the a simple iGA. Based on the results presented in fig-
ure 2(b), the theoretical convergence time of the active iGA
with the proper population sizing, should be constant. The
empirical results show in figure 6(b) support such assump-
tion. Combining the population sizing and the convergence
time, the number of functions evaluations of the active iGA
should grow linear. However, due to the three structure of
the tournament evaluation used, a staircase effect may be
appreciated in figure 6(c).

Finally, figure 6(d) shows the speedup achieved using the
active iGA respect to a simple iGA. The results show how
with the active use of a simple low-cost high-error synthetic
fitness function we were able to achieve speedups ranging
from 3 up to 7 times. The instability of the speedup is the
result of the constrains on the population sizing (fee figure
6(a)). However, being able to cut down the total number of
evaluations on such ratios proved to be an effective method
for combating the user fatigue.

5. DISCUSSION AND CONCLUSIONS
This paper has focused on two critical elements for com-

bating the user fatigue problem of iGAs: (1) the lack of
a computable fitness, and (2) how synthetic fitness mod-
els based on user evaluation may be built. We proposed a
heuristic to synthesize a model of the user fitness combining
partial ordering concepts, multiobjective optimization ideas,
and support vector machines. The proper trained model
provided by a ε-SVM is able to satisfy the two properties a
synthetic fitness need to satisfy—fitness extrapolation, and
order maintenance.

The existence of a synthetic fitness allow us to actively use
such model to combat user fatigue. The actively optimiz-
ing the synthetic fitness using the compact GA, produce a
population of candidate solutions. The injection of such can-
didate solutions into the user evaluation process effectively
reduce the number of evaluations required on the user side
till convergence. The empirical results obtained by an unex-
perienced proved such improvements with speedups ranging
from 3 up to 7 times.
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Figure 6: Analysis of the results obtained using the
active iGA propose when compare to a simple iGA.
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